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Abstract

Typical object detection systems work by training a classifier on features extracted at different scales of
an object. In this paper we investigate the performance of an object detection system in which different
classifiers which are trained at various scales of an object are combined and compare the performance with
a typical object detection system where a single classifier is trained for all the scales. The notion behind
such an approach is that the features extracted over smaller scales give more object’s specific information
whereas large scale features provide more contextual information. We trained different classifiers for
different scales and combined their output to reach a decision about the existence of an object. Confidence
rated Ada-boost is used to train the classifiers. It was found that training a single classifier for all the
scales results in superior performance as compared to training different classifiers for each scale and than
combining their results. We show our results on objects belonging to three categories in TUDarmstadt
and one category in Caltech4 [1].

1 Introduction

In this paper we propose a technique for object de-
tection. For example, given an image we would like
to detect the instance of a specific object. There
exist myriad of approaches for object categoriza-
tion which classify images based upon the presence
of an object inside them irrespective of where ex-
actly that object is present or located inside the
image. Object detection is particularly an exten-
sion of object classification methods in which an
image is not only categorized but also the object of
interest is detected and located. Because of scale,
rotation, deformation and viewpoint changes of the
object, object detection is quite a challenging area
of computer vision, therefore many state of the art
methods only solve a binary classification problem.

The issues of scale in object detection systems have
always been very critical. It is unknown at what
scale the features need to be computed. However,
it is widely agreed that features computed at higher
scales tend to have more contextual information
whereas lower scale features tend to be more spe-
cific.

Typical object detection system work by training
a classifier on features that are extracted at dif-
ferent scales. In this paper we study the effect
of different scales on the detection performance.
We extract features at different scales and train
different classifiers each specialized in making a
decision for a single scale. We combine the output

of these classifiers and adjust the weights to control
the contribution of each classifier, such that clas-
sifiers trained at high scales are weighted more or
less than the classifiers trained at lower scales and
vice-versa. Our series of experiments reveal that
training classifiers only from features extracted at
a particular scale and combining them using dif-
ferent weighting schemes do not result in a per-
formance gain. Training a single classifier for all
scales and letting the learning algorithm choose the
best feature and scale can result in much better
performance.

We discuss some other object detection systems in
section 2, our approach in section 3 and experi-
mental results in section 4. We conclude in section
5.

2 Related Work

There are a lot of methods suggested for object
detection in the presence of occlusion, clutter, scale
changes, rotation, deformations and viewpoint vari-
ations. They vary in their choice of the feature sets
and choice of the classifier [2, 3, 4]. Torralba et al
in [5] are using shared boosted decision stumps to
find shared features among different classes. The
features are inspired from [6] and are extracted for
32x32 window of an image (note the window size
is fixed). Opelt et al in [3] detects objects using
boundary fragment model. The chamfer distance
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Figure 1: Left: Original Image, Middle: shows the

interest points along with the area where features are

to be computed, Right: shows the grid and the points

at which features are to be computed.

between the boundaries fragments of an object are
trained using boosting. Shotton et al [4] approach
in is very much similar to Opelt, as they are also
using boundaries and a novel formulation of cham-
fer distance to train classifier to detect object in
the image. Leibe et al obtain the best results for
object detection in [2] where they propose implicit
shape model. Segmentation and recognition are
considered as the same process both sharing in-
formation. Some other interesting work on object
detection has been done in [7, 8].

There has been a significant debate over the use
of features extracted around the interest points
(sparse features) to features extracted around points
on a regular grid (dense feature). The interest
points are detected using some key-point detector
for example Harris-Affine. The features are com-
puted for the area around these points, so the area
around these points are characterized in scale and
rotation invariant way. These are typically know as
sparse features as contrast to dense features which
are computed for some area around grid points
(both sparse and dense points shown in figure 1).
Using interest points have the advantage that the
feature are scale invariant, but they have the disad-
vantage of being sparse. The grid point’s features
have the advantage of being dense but they lack to
provide the scale information.

In our previous work [9], we found that using dense
features is much beneficial than using sparse fea-
tures for object categorization, thats why in this
study we have used dense features. For more infor-
mation on decision to use dense regular grid (last
image of figure 1) instead of interest points, refer
to [10] in which authors have provided a compar-
ative evaluation of both techniques. Our feature
extraction strategy is most similar to [11, 12] where
dense features are computed at grid points with a
spacing of 10 pixels. The features are computed at
radii of 4,8,12 and 16 pixels. Using these features
impressive results have been achieved for image
categorization and scene classification, though in
this work we use them for object detection.

3 Approach

We extract SIFT features from an intensity image.
SIFT feature are extracted at grid points as shown
in figure 2, where the grid size is 10x10. Features
are extracted at a radius of 4, 8, 16, 24 and 32
pixels around the grid points. A typical object
and a non-object point along with its multi scale
range is shown in figure 2. Once the features are
extracted they are clustered into a codebook of
size 200. The clustering is performed by k-means
clustering of the features. 1. The Codebook size
of 200 has been used widely in previous works [11,
13] and has been proven to give optimal results.
Once the features in an image are quantized, we
have used a sliding window based approach, where
each window is represented by the histogram of
features contained with in that window (the bag of
words model). The size of the window over which
histograms are computed is not fixed (since some
images are vary large for example faces and some
very small for example cars). We have computed
histograms over the windows equal to the size of
the cell at pyramid level 3 [13] ,with a spacing of
50 pixels.

Typical object detection approaches requires back-
ground images to train the classifier for any certain
object. The idea is to extract histograms from the
object and from the background images and train
a classifier using these object’s and non-object’s
features. We have not used any background images
in this work. All the categories we used are anno-
tated (bounding box), refer to figure 4. Once the
bag-of-words are computed for each cell (belonging
either to object or to non-object), they are fed into
learning algorithm. We have used a boosting [14]
learning algorithm to train classifiers. There are
a lot of variants of boosting. We have used con-
fidence rated Ada-boost as it appears to perform
better than other versions of boosting for generic
object categorization as illustrated in [15].

As mentioned, we extract features at different scales
and train a classifier for each scale. Once classi-
fiers are trained for different scales, their output is
combined. Let Ci denotes the output of the clas-
sifier at scale S(i), where S = (4, 8, 16, 24, 32) and
i range from 1 to N We consider four combination
strategies as follows (P denotes the output of the
combination strategy and N = 5):

• Scheme 1: We give equal weights to all clas-
sifiers (equal weighting), such that

P =
1
N

N∑

i=1

Ci (1)

1Actual features clustered vary by experiment (refer to
section 4 for more details)
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Figure 2: Left: Shows typical points across the image at which features are extracted, Middle: Typical scale at

which features are computed (a typical object point is shown in green, whereas non-object point is shown in red),

Right: Image point zoomed to illustrate feature extraction scales.

• Scheme 2: We give more weight to the clas-
sifier trained at higher scales and less weight
to the one trained at lower scales.

P =
N∑

i=1

1
2N−i+1

Ci (2)

• Scheme 3: We give more weight to the clas-
sifier trained at lower scales and more to the
higher scales classifiers.

P =
N∑

i=1

1
2i

Ci (3)

• Scheme 4: In this scheme we give maximum
weight to the classifier in the middle, weights
decreases linearly on both sides.

In order to detect the instance of an object, each
cell in the testing image is classified as object and
non-object with a certain confidence. Some of the
classification results are shown in figure 3. The
output of each classifier for each cell acts as a
vote, in a Hough voting space. Votes are accu-
mulated in a circular search Window with a radius
of 3 around the center of the cell (represented by
a Mean-Shift-Mode estimation [16]). The Mean-
Shift modes that are above a certain threshold tdet

are taken as detections of object instance. (Note.
We have used different tdet for different categories).
An object is deemed correctly detected if the over-
lap of the bounding boxes (detection vs ground
truth) is greater than 70%.

4 Experimental Results

In this section, we present the results on three cate-
gories in TUDarmstadt database and one category
in the Caltech database, [1]. TUDarmstat consist
of approximately 100 images of each category i.e.,
cows, bikes and cars. Bikes and cars categories
are pretty challenging as there are significant scale
and viewpoint changes. The cows category is quite
easy as compared to other two as there is not much

Figure 3: Left and Right Image: Illustration of

the classifiers output trained at two different scales,

Detected object’s points are shown in red with blue

circle’s radius depicting its confidence, more the radius

high is the confidence (note the difference in the output

of classifiers trained at different scales).

scale and rotation. Faces category in the Caltech
database is perfect for testing detection tasks as
each image is rich in background. Statistics of
training and testing images are shown in table 1. In
Bikes category there were some images containing
more than one bike (around 7 images) We have
not incorporated multi object detection, so we have
not used those images as part of testing or train-
ing. Databases are fully annotated (bounding box
present around the object). Some sample images
along with annotations are shown in figure 4. SIFT
descriptors are computed on intensity images as
described in the above section. No color or other
information has been used.

4.1 Experiment 1

In the first experiments, we train a separate classi-
fiers for the features belonging to each scale. Fea-
tures are extracted from the training images and
a separate codebook is formed for all the features
belonging to each scale to train a classifier. Results

Table 1: Training/Testing Statistics

Training Testing
Bikes 30 67
Cars 30 70
Cows 30 81
Faces 100 350
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Figure 4: Some examples of the training images along with their annotations.

are shown in table 2. We got the best performance
for bikes at scale of 8, scale of 24 gave best perfor-
mance for cars. Similarly scale of 16 and 24 gave
best performance for cows and faces respectively.
From the results it is difficult to infer as to which
classifier performs best. The average results of each
classifier trained for each scale is shown in figure
5. (obtained by averaging the rows in table 2) It
is interesting to note that detection performance
increases for higher scale features. We got the best
performance for the classifier trained on features
with scale of 24. Performance deteriorates as scale
is increased from 24 to 32.

Table 2: Results for Experiment 1 (Percentage of

correct detection)

Scale Bikes Cars Cows Faces
4 31 24 69 67
8 73 57 89 72
16 59 76 90 72
24 69 87 84 73
32 56 80 88 70

1 2 3 4 5
45

50

55

60

65

70

75

80

i, such that S(i) = 4,8,16,24,32

Pe
rfo

rm
an

ce
 P

er
ce

nta
ge

Figure 5: Percentage performance of the classifiers

trained for the features extracted at different scale, y-

axis is the Percentage performance, x-axis is the scale

index i where S(i) = {4, 8, 16, 24, 32}

Table 3: Results for Experiment 3, Percentage of

correct detection (for details regarding schemes refer

to section 3)

Bikes Cars Cows Faces Average
Scheme 1 60 93 93 77 81
Scheme 2 62 81 93 76 78
Scheme 3 64 94 88 75 80
Scheme 4 64 87 91 76 79

Table 4: Results for Experiment 2 (Percentage of

correct detections)

Scale Bikes Cars Cows Faces Average
All 89 76 95 77 84

4.2 Experiment 2

In the second experiment, we weighted the output
of each individual classifier using different schemes
as discussed in section 3. Various mixing strategies
definitely boosted the results from the case when
single classifiers were used (Experiment 1), but
all of them gave almost similar results. We got
the best performance when we simply mixed the
output of the classifiers, 81%.

4.3 Experiment 3

In the third experiment, we trained a single classi-
fier for all the scales. Features were extracted from
training images and a single codebook was formed
for all the features. We got the best average per-
formance of 84% in this case. Results are shown in
table 4. Some of the good as well as bad detection
results are shown in figure 6.
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Success Success Success Success
Success Success

Success
Success Success Success Failed

Failed
Failed Success Success Success Success Success

Success Success Success Success Success Success Failed

Failed Failed Failed Failed Success Success Success

Success Success Success Success Success Success Success

Success Success Failed Failed Failed Failed
Success

Success Success Success Success Success Success Success

Success Success Success Success Failed Failed Failed

Failed

Figure 6: Some of the detection results on three categories. Objects in blue boxes are an example of right detection

whereas red boxes are example of bad one.
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5 Conclusions
In this paper we trained a cascade of classifiers on
dense features computed at different scales around
grid points. The output of these classifiers is com-
bined using different weighting schemes to detect
an object from the image. The classifiers trained
on one particular scale did not reveal promising
results. The combination of the classifiers boosted
the results but no single scheme result out-performed
others. On the other hand classifiers trained on all
the features gave us the best performance, which
shows that the different features extracted at dif-
ferent scales are required for efficiently detecting an
object and the learning algorithm (boosting here)
can do the best job of selecting which feature is ap-
propriate and its scale accordingly. A considerably
better approach would be to search for all possible
combinations of weights in which classifiers can be
combined (different schemes we discussed are just
four possibilities out of a huge number), we are
currently working on it.
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